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Abstract. Although data sharing across organizations is often advocated as a
promising way to enhance cybersecurity, collaborative initiatives are rarely put
into practice owing to confidentiality, trust, and liability challenges. We investi-
gate whether collaborative threat mitigation can be realized via controlled data
sharing. With such an approach, organizations make informed decisions as to
whether or not to share data, and how much. We propose using cryptographic
tools for entities to estimate the benefits of collaboration and agree on what to
share without having to disclose their datasets (i.e., in a privacy-preserving way).
We focus on collaborative predictive blacklisting: Forecasting attack sources based
on one’s logs and those contributed by other organizations. We study the impact
of different sharing strategies by experimenting on a real-world dataset of two
billion suspicious IP addresses collected from Dshield over two months. We find
that controlled data sharing yields up to 105% accuracy improvement on average,
while also reducing the false positive rate.

1 Introduction

Over the past few years, security practitioners and policy makers have called for
sharing of data related to cyber threats and attacks. Prior work has shown that orga-
nizations are exposed to similar vulnerabilities, targeted by the same malevolent ac-
tors, and that collaboration could enhance timeliness and accuracy of threat mitiga-
tion [21,25,33]. The US government recently initiated efforts to encourage the private
sector to share cybersecurity information to improve US cyber defenses [35]. At the
same time, the private sector launched community-based initiatives such as the RedSky
Alliance [30], ThreatExchange [1], DOMINO [39], and WOMBAT [36].

However, collaborative security initiatives have had little success due to the related
confidentiality, privacy, trust, and liability challenges. Sharing security data may dam-
age competitivity, reveal negligence, and expose sensitive and private information. In
fact, data sharing initiatives are often opposed by the privacy community as potentially
harmful to individuals [2], while organizations have little choice other than establishing
“circles of trust,” aiming to control potential loss of competitive advantage and data ex-
posure. Alas, this creates the need for lengthy out-of-band processes to establish trust,
which hinders speediness and economic viability of such initiatives, as highlighted by
a recent Federal Communications Commission (FCC) report [9].

1.1 Problem Statement

We investigate whether collaborative threat mitigation can be realized via a con-
trolled data sharing approach, i.e., seeking an effective middle ground between sharing



everything and sharing nothing, and helping organizations make informed decisions
about whether or not to share data, and how much.
This raises a few compelling research challenges:

1. How can organizations estimate benefits of collaboration? What metrics can two
organizations use to guide the decision as to whether or not they should share data?

2. Can we ensure that benefit estimation occurs in a privacy-preserving way, so that
organizations do not need to disclose their entire datasets, but only the minimum
required amount of information?

3. Once two organizations decide to collaborate, how much and what should they
share?

We address these challenges in the context of collaborative predictive blacklisting,
whereby different organizations aim to forecast attack sources, based on their firewall
and Intrusion Detection Systems (IDS) logs, and also those generated by collaborating
organizations. We model collaboration as a three-step process in which organizations
first estimate the benefits of data sharing among each other, then establish partnerships
with promising partners, and finally share data with them. We aim to investigate which
collaboration strategies work best, in terms of the resulting improvement in prediction
accuracy and false positive rate.

1.2 Roadmap

We experiment with different metrics for estimating the benefits of collaboration,
using Jaccard, Pearson, and Cosine similarity of the logs, as well as the size of their in-
tersection. We also test different degrees of data sharing, e.g., sharing everything or only
information about attacks entities have in common. One crucial aspect of our work is to
impose a fundamental constraint: Benefit estimation and data sharing should occur in
a privacy-preserving way, which we attain via cryptographic tools for secure two-party
computation (2PC) [38]. As research in 2PC has produced increasingly efficient and
practical implementations, both for general-purpose garbled circuits [19] and special-
purpose protocols (e.g., private set intersection [11,13,27]), the overhead introduced by
the privacy protection layer is appreciably low (cf. Section 6.5).

Aiming to compare different strategies, we perform an empirical evaluation using a
real-world dataset of 2 billion suspicious IP addresses collected from DShield.org [31]
over two months. This dataset contains a large variety of contributors, which allows
us to test the effectiveness of data sharing among diverse groups of victims. We per-
form a quantitative analysis of this dataset in order to identify victims’ and attackers’
profiles, among other features. This helps us clean the dataset and design a meaning-
ful (controlled) data sharing experiment. We repeatedly select 100 victims at random
and measure the accuracy improvement of the blacklisting algorithm, performing the
prediction by means of a standard algorithm based on Exponentially Weighted Moving
Average (EWMA) [33].

Our analysis yields several key findings. We observe that: (1) The more informa-
tion is available about attackers, the better the prediction, as intuitively expected; (2)
Different collaboration strategies yield a large spectrum of prediction accuracy, and in
fact, with some strategies, sharing does not help much; (3) Collaborating with other
organizations not only helps improve prediction, but also reduces the false positive rate;



and (4) sharing information only about common attackers is almost as useful as sharing
everything. As a results, we conclude that controlled data sharing can help organiza-
tions find the right balance between indiscriminate sharing and non-collaboration, i.e.,
sharing just enough data to improve prediction while protecting privacy.

2 Related Work

Previous work on collaborative intrusion detection has usually employed a central-
ized system where organizations contribute data to Trusted Third Parties (TTPs) in re-
turn for blacklisting recommendations. Zhang et al. [40] introduce the notion of highly
predictive blacklisting for predicting future attacks based on centralized logs, while
follow-up work by Soldo et al. [33] improve by using an implicit recommendation sys-
tem and further increase accuracy. Although we re-use one of the prediction algorithms
from [33], previous work [33,40] does not take into account privacy and relies on TTPs.

Prior research attempted to mitigate privacy challenges from security data sharing
by relying on data anonymization and sanitization [3,24,28,32,37]. However, this makes
data less useful [22,23] and prone to de-anonymization [8]. Other proposals require
entities to send encrypted data to a central repository that aggregates contributions [4].
Locasto et al. [25] propose privacy-preserving data aggregation using Bloom filters,
which, while constituting a one-way data structure, are vulnerable to simple guessing
attacks. Secure distributed data aggregation is also discussed in [5,7]. While aggregation
can help compute statistics, it only identifies most prolific attack sources and yields
global models. As shown in [40], however, generic attack models miss a significant
number of attacks, especially when sources choose targets strategically and focus on a
few known vulnerable networks, thus yielding poor prediction performance.

Previous work has also looked at the possible value of building collaborative and
distributed intrusion detection systems. Katti et al. [21] are among the first to study cor-
relation among victims and demonstrated the prevalence of “correlated” attacks, i.e.,
attacks mounted by same sources against different victims. They find that: (1) Corre-
lations among victims are persistent over time, and (2) Collaboration among victims
from correlated attacks improves malicious IP detection time. They also propose a col-
laboration mechanism in which victims learn from a centralized entity about other cor-
related victims, and can then query each other about ongoing attacks. Our work differs
from [21] as we introduce a controlled data sharing approach and study distributed col-
laborator selection strategies based on similarity measures, model different data shar-
ing strategies, measure true and false positives of blacklisting recommendations, and
address privacy concerns using efficient secure computation techniques.

3 Preliminaries

This section introduces notations and relevant background information.

3.1 System Model

In the rest of the paper, we assume a group of entities V = {V;}?_,, where each V;
holds a dataset L; logging suspicious events, such as, suspicious IP addresses observed
by a firewall along with corresponding (time, port). For each 4, we denote with .S; the
set of unique IP addresses in L;.



Each entity V; aims to predict and blacklist IP addresses that will generate future
attacks. We consider a controlled data sharing model for collaborative predictive black-
listing, whereby entities estimate the benefits of collaboration in a privacy-preserving
way, and then decide with whom, and what, to share. Each entity performs predictions
based not only on its own dataset but also on an augmented dataset that comprises infor-
mation shared by others, aiming to improve prediction and, at the same time, avoiding
the wholesale disclosure of datasets. To this end, we turn to efficient cryptographic pro-
tocols for privacy-preserving information sharing, presented below.

3.2 Cryptographic Tools

Secure Two-Party Computation (2PC) [38] allows two parties, on respective input x
and y, to privately compute the output of any (public) function f over (z,y). In other
words, neither party learns anything about the counterpart’s input beyond what can be
inferred from f(z,y). Security of 2PC protocols is formalized by considering an ideal
implementation where a Trusted Third Party (TTP) receives the inputs and outputs the
result of the function: Then, in the real implementation of the protocol (without a TTP),
each party does not learn, provably, more information than in the ideal implementation.
The first 2PC instantiation, based on garbled circuits, was presented by Yao [38] — since
then, optimizations and more efficient constructions have been presented, such as [19].

Private Set Intersection (PSI) [14] is a 2PC primitive that lets two parties, a server on
input a set .S, and a client on input a set C, interact so that the latter only learns S N C,
and the former learns nothing (besides |C|). State-of-the-art instantiations include both
garbled-circuit based techniques [18,27] and specialized protocols [12—-14].

PSI with Data Transfer (PSI-DT) [12] extends PSI as follows: it involves a server on
input a set S where each item is associated to a data record, and a client on input a set
C. PSI-DT allows C' to learn the set intersection, along with the data records associated
to the items in the intersection (and nothing else), while S learns nothing.

Private Set Intersection Cardinality (PSI-CA) [11,14] is a more “stringent” variant
than PSI, as it only reveals the magnitude of the intersection, but not the actual contents.

Private Jaccard Similarity (PJS) [6] allows two parties, a server on input a set S, and
a client on input a set C, to interact in such a way that the client only learns the Jaccard
similarity [20] between their respective sets, i.e., J(S,C) = }ggg} = ‘SH‘IET_C;L.OC'.
PJS can be instantiated using PSI-CA only, since secure computation techniques (in-
cluding PSI-CA) always reveal the size of inputs (i.e., size of sets in PSI-CA).

In the rest of the paper, security of protocols discussed above is assumed in the
honest-but-curious model, i.e., parties are assumed to follow protocol specifications
and not to misrepresent their inputs, but, during or after protocol execution, they might
attempt to infer additional information about other parties’ inputs.

3.3 Predictive Blacklisting

Let ¢ denote the day an attack was reported and 7" the current time, sot = 1,2, ..., T.
We define a training window, 7}, and a testing window, 7,.,. Prediction algorithms
usually rely on information in the training data, ¢t € T}, to tune their model and
validate the predictions for the testing data, t € Ti..



The Global Worst Offender List (GWOL) is a basic prediction algorithm that selects
top attack sources from T4, i.€., highest number of globally reported attacks [40].
Local Worst Offender List (LWOL) is the local version of GWOL and operates on a
local network based entirely on its own history [40]. LWOL fails to predict on attackers
not previously seen, while GWOL tends to be irrelevant to small victims. Thus, machine
learning algorithms were suggested to improve GWOL and LWOL [33,40].

We use the Exponentially Weighted Moving Average (EWMA) algorithm, as pro-
posed by Soldo et al. [33], to perform blacklisting prediction. EWMA uses time series
aggregation: It aggregates attack events from 7},,;, to predict future attacks. Note that it
is out of the scope of this paper to improve on existing prediction algorithms. Rather, we
focus on evaluating the feasibility of controlled data sharing for collaborative threat mit-
igation and, specifically, on measuring how different collaboration strategies perform in
comparison to each other.

Accuracy Metrics. As commonly done with prediction algorithms, we measure accu-
racy with True Positives (TP), which is the number of predictions that correctly match
future events. In practice, potentially malicious sources might not be blacklisted at once
as blacklisting algorithms rely on several observations over time, such as the rate at
which the source is attacking or the payload of suspicious packets. Therefore, it is im-
portant to distinguish between the prediction and the blacklisting algorithm: the former
identifies potential malicious sources and/or creates a watch-list, which is fed to the
latter in order to help decide whether or not to block sources. The prediction algorithm
thus enables the identification of suspicious IP addresses that deserve further scrutiny
and improve the effectiveness of blacklisting algorithms. Therefore, prior work [33,40]
focused almost exclusively on measuring TP and ignored other accuracy measures such
as false positives. By contrast, we decide to also study False Positives (FP), i.e., the
number of predictions that are incorrect. This measurement helps us better understand
the possible negative overhead introduced by data sharing.

Upper Bounds. As in previous work [33], we use two upper bounds to evaluate the
accuracy of the prediction, aiming to take into account the fact that a future attack can
be predicted only if it already appeared in the logs of some victims. The Global Upper
Bound GUB(V;) measures, for every target V;, the number of attackers that are both
in the training window of any victim and in V;’s testing window. For every V;, we also
define the Local Upper Bound LUB(V;), as the number of attackers that are both in V;’s
training and testing windows.

4 Collaborative Predictive Blacklisting via Controlled Data Sharing

We outline our controlled data sharing approach for collaborative predictive black-
listing. It involves three steps:

1. Estimating the benefits of sharing security data between potential partners, in a
privacy-preserving way (i.e., without disclosing the datasets);

2. Establishing partnerships;

3. Sharing data in a privacy-respecting way and guaranteeing that collaborating enti-
ties only share what is agreed upon.



4.1 Benefit Estimation

We consider several similarity metrics to estimate the benefits of collaboration:
We report them in Table 1, along with the corresponding protocols for their privacy-
preserving computation. We look at similarity metrics since previous work [21,40] has
shown that collaborating with correlated victims works well, i.e., entities targeted by
attacks mounted by the same source against different networks (around the same time).
Intuitively, correlation arises from attack trends as correlated victim sites might be on a
single hit list or natural targets of a particular exploit.

We consider two set-based metrics, i.e., Intersection-Size and Jaccard, which mea-
sure set similarity and operate on unordered sets, as well as Pearson and Cosine simi-
larity, which provide a more refined measure of similarity as they also capture statistical
relationships. The last two metrics operate on data structures representing attack events,
such as a binary vector, e.g., S; = [si, Si, - - * Siy ], Of all possible IP addresses with 1-s
if an IP attacked at least once and 0-s otherwise. This can make it difficult to privately
compute correlation in practice, as both parties need to agree on the range of IP ad-
dresses under consideration to construct vector .S;. Considering the entire range of IP
addresses is not reasonable (i.e., this would require a vector of size 3.7 billion, one entry
for each routable IP address). Instead, parties could either agree on a range via secure
computation or fetch predefined ranges from a public repository.

All the functions we consider are symmetric, i.e., both parties obtain the same value,
however, some of the protocols used for secure computation of the benefit estimate, such
as PSI-CA [11] and PJS [6], reveal the output of the protocol to only one party. Without
loss of generality, we assume that this party always reports the output to its counterpart,
which is a common assumption in the honest-but-curious model.

In practice, one could use any combination of metrics. Also, the list in Table 1
is non-exhaustive and other metrics could be considered, as long as it is possible to
efficiently support their privacy-preserving computation.

4.2 Establishing Partnerships

After estimating the benefits of collaboration, in order to establish partnerships, en-
tities could follow different strategies, acting in a distributed way or relying on a coordi-
nating entity. For instance, an organization could request the collaboration of all entities
for which estimated benefits are above a threshold (i.e., based on a “local threshold”),
or enlist the k partners with maximum expected benefits (“/ocal maximization”). Local
approaches have the advantage of not involving any third parties, but may require com-
plex negotiations in order to reach a partnership agreement, as collaboration incentives
may be asymmetric, e.g., party A might be willing to collaborate with B, but B might
prefer to do so with C. With centralized approaches, a semi-trusted server collects esti-
mated benefits (but not datasets) and clusters entities so that those in the same cluster
collaborate (“clustering”), or encourage sharing among the pairs with highest expected
benefits seeking a global utility-vs-cost optimum ( “global maximization”).

Naturally, an appropriate partner selection strategy heavily depends on the use-case
scenario and the trade-offs that organizations are willing to pursue. Hence, some stra-
tegies might work well in different settings depending on economic, strategic, and op-
erational factors. The evaluation of the different partnership strategies is an interesting
research problem, particularly amenable to a game-theoretic analysis. In this work, we
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Table 1: Metrics for estimating benefits of col- ~ Table 2: Strategies for data sharing among
laboration between V; and V;, along with cor-  partners V; and Vj, along with corresponding
responding protocols for their secure computa- ~ protocols for their secure computation.

tion. s, p; and o, o5 denote, resp., mean and

standard deviation of S; and Sj.

do not experiment with different strategies to establish partnerships and leave such an
analysis for future work. As a result, in our experiments (Section 6), we fix one partner
selection strategy and focus on the evaluation of different benefit estimation and data
sharing mechanisms.

4.3 Data Sharing

After two entities have established a partnership, they can proceed to share their
data with each other. This process can occur in different ways, e.g., they can disclose
their whole datasets or only share which IP addresses they have in common, with or
without all attack events associated to common addresses.

Following our controlled data sharing approach, nothing is to be disclosed beyond
what is agreed upon (and, ideally, what is beneficial). For instance, if partners agree to
only share information about common attackers, they should not learn any other infor-
mation. Possible sharing strategies we consider, along with the corresponding privacy-
preserving protocols, are reported in Table 2. Again, we assume that the output of the
sharing protocol is revealed to both parties.

Strategies denoted as Intersection/Union with Associated Data mean that parties
not only compute and share the intersection (resp., union), but also all events related to
items in the resulting set. Obviously, Union with Associated Data does not yield any
privacy, as all events are mutually shared, but we include it to compare its efficacy to
Intersection with Associated Data.

5 The DShield Dataset

As we aim to evaluate the viability of the controlled data sharing approach and
compare how different sharing strategies impact prediction accuracy, we need to design
an experiment involving real-world data pertaining to suspicious IP addresses and ob-
served by different organizations. To this end, as done in prior work [21,33,40], we turn
to Dshield.org [31]: this section introduces the data we collect from Dshield, and the
methodology we use to clean it and to design a meaningful data sharing experiment.
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Fig. 1: Number of attacks per day: (a) On all targets, and (b) by all sources. CDF of the daily
number of common and unique: (c) Sources per active victims, and (d) victims per active sources.

5.1 Original Dataset

We obtained two months’ worth of anonymized logs from Dshield.org [31], a com-
munity based repository of intrusion detection system logs that publishes blacklists of
most prolific attack sources reported in these logs. Each entry in the logs includes an
anonymized Contributor ID (the target), a source IP address (the suspected attacker), a
target port number, and a timestamp, as illustrated in Table 3. Note that DShield anony-
mized the “Contributor ID” field by replacing it with a random yet unique string that
maps to a single victim.

The data collected from DShield consists of about 2 billion entries, generated by
800K unique contributors, including more than 16M malicious IP sources, for a total of
170GB worth of logs. We pre-processed the dataset in order to reduce noise and erro-
neous entries, following the same methodology adopted by previous work on DShield
data [33,40]: We removed approximately 1% of of all entries, which belonged to invalid,
non-routable, or unassigned IP addresses, or referred to non-existent port numbers.



Contributor ID| Source IP |Target port Timestamp
44cc551a |211.144.119.042| 1433 |2013-01-01 11:48:36

Table 3: Example of an entry in the DShield logs.

5.2 Measurements & Observations

We performed a small measurement analysis of our DShield dataset, aiming to bet-
ter understand characteristics of attackers and victims. Overall, our observations are
in line with prior work [29,33] and demonstrate that attackers tend to hit victims in a
coordinated fashion, thus confirming the potential for collaboration.

General Statistics. We observe that 75% of targets contribute less than 10% of the
time, while 6% of targets (50,000 targets) contribute daily. We describe, at the end
of this section how we filter out targets that seldom contribute. For more details and
statistics, we refer to the Appendix.

Victims’ Profile. Fig. 1(a) shows the number of attacks per day on targets, with mean
number of daily attacks on targets of 58.46 and median of 1. We observe three dist inct
victims’ profiles: (1) Rarely attacked victims: 87% of targets get less than 10 attacks
day, indicating many victims seldom attacked; (2) Lightly attacked victims: 11% of
victims get 10 to 100 attacks a day; (3) Heavily attacked victims: Only 2% of targets
are under high attack (peaking at 11M a day). In other words, most attacks target few
victims.

Attackers’ Profile. Fig. 1(b) shows the number of victims attacked by each source per
day, with mean number of daily attacks of 45.85 and median of 2. We observe that 80%
of sources initiate less than 10 attacks a day. A small number of sources generates most
attacks (up to 10M daily). This indicates two main categories of attackers: Stealth and
heavy hitters. In our data set, we observe that several of top heavy attackers (more than
20M attacks) come from IP addresses owned by ISPs in the UK.

Attacks’ Characteristics. Fig. 1(c) shows the Cumulative Distribution Function (CDF)
of the number of unique sources seen by each active target a day. We focus on active
victims: Victims that did report an event on that particular day because, as previously
discussed, many victims report attacks rarely thus creating a strong bias towards 0. The
figure contains attackers shared with other targets (common attackers) and attackers
unique to a specific victim. 90% of victims are attacked by at most 40 unique sources
and 60 shared sources. This shows that, from the victim’s perspective, targets observe
more shared sources than unique ones. Compared to previous work [21,33], this rein-
forces the observation that targets have many common attackers. Fig. 1(d) shows that
90% of sources attack 30 common victims and 60 unique victims. Although attackers
share a large number of common victims, they also attack other victims. In Fig. 1(c)
and Fig. 1(d), we observe again three types of victims and two types of attackers.

Observations. A significant proportion of victims (~70%) contributes a single event
overall. After thorough investigation, we find that these one-time contributors can be
grouped into clusters all reporting the same IP address within close time intervals (of-
ten within one second). Many contributors share only one attack event, at the same
time, about the same potentially malicious IP address. Similarly, many contributors



only contribute one day out of the two months. These contributors correlate with the
aforementioned one-time contributors.

5.3 Final Dataset

In order to select a meaningful dataset for our experiments, we remove contributors
that do not report much information. Specifically, we remove victims that contribute
either (1) only one event overall, or (2) only one day and less than 20 events over the
two-month period. This reduces the number of considered victims from 800,000 to
188,522, resulting in the removal of about 2 million attacks. This filtering maintains a
high diversity of contributors, and seeks to model real-world scenarios (as opposed to
focusing on large contributors only).

In summary, our final dataset includes 2 billion attacks, contributed by almost 190 K
entities over 60 days, each reporting an average of 200 suspicious (unique) IPs and
2,000 attack events.

6 Experimental Analysis

We compare different benefit estimation metrics and sharing strategies, by measur-
ing improvements to prediction accuracy, using the final Dshield dataset. The dataset
and the source code (written in R) used in our experiments are available upon request.

6.1 Experimental Setup

Our objective is to design an experiment that is easy to reproduce and enables a
meaningful evaluation of controlled data sharing. We describe below our experimental
setup and introduce our modeling assumptions.

Sampling of Potential Partners. Our final dataset includes 188,522 victims. In theory,
we could evaluate the performance of controlled data sharing by considering all pos-
sible collaboration pairs. However, this would be impractical. As a result, we follow
a sampling approach, i.e., we select 100 entities at random from all possible victims.
We then evaluate different collaboration strategies considering the 100 - 99/2 = 4,950
possible pairs, and average results over 100 independent iterations. The random sam-
pling model is “conservative” in the resulting improvement of the prediction accuracy,
as it is likely to do worse than if entities considered non-random potential partners, e.g.,
organizations in the same sector.

Benefit Estimation and Partner Selection. We consider four privacy-preserving met-
rics for estimating the benefits of sharing (as discussed in Section 4.1): Jaccard, Pear-
son, and Cosine similarity and Intersection-Size. Each metric is computed pairwise: For
each metric, we obtain a 100 x 100 matrix estimating data sharing benefits among all
possible pairs of organizations.

Recall from Section 4.2 that, while we mention a few possible strategies to select
partners, we do not evaluate them in this paper, as such mechanisms are out of scope.
For simplicity, we consider an approach similar to a global maximization: We partner
entities with the highest values in the similarity matrix. Specifically, we select the top
1% collaboration pairs (i.e., 50 pairs) with the maximum expected benefits. This is
likely a conservative stance as we consider only a small number of partnerships (i.e.,
only few entities collaborate). This approach results in some entities sharing data with



several partners, and others not collaborating with anyone. We define the number of
collaborators as the number of distinct entities (out of 100) that are selected in the 50
collaboration pairs. We also define the coalition size as the number of other entities an
organization collaborates with.

Sharing. As described in Section 4.3, we consider three types of data sharing strategies,
(1) Intersection, (2) Union with Associated Data, and (3) Intersection with Associated
Data. Since (1) is likely to yield poor results, we do not consider it in our experiments.
With (2), partners share all data known by each party prior to current time ¢: It is a
generous strategy that enriches others’ datasets rapidly. Whereas, with (3), partners only
share events from those IP addresses that attacked both partners (i.e., the intersection).

Prediction. We use a five day window to train our prediction algorithm (7},,;,, = 5) and
aim to predict attacks for the next day (735, = 1). Although our dataset contains two
month worth of data, in order to speed up our experiments, we focus our analysis over
a one-week period, i.e., we predict attacks on days 6 to 12, using the previous five days
as the training dataset.

Accuracy. As anticipated in Section 3.3, we measure the prediction success by com-
puting the number of True Positives (TP), similar to prior work [33,40]. True positives
correspond to successfully predicted attacks. We measure prediction improvement as:

I = (TP, — TP) /TP,

where TP is the number of true positives before collaboration and TP, is the number of
true positives after collaboration. In the following, we give both improvement measures
over all entities, and for collaborating entities only. Unlike previous work [33,40], we
also measure False Positives (FP) aiming to measure the potential negative effects of
controlled data sharing. This allows us to take precautions on the notion of data sharing
and more effectively compare different benefit estimation and data sharing strategies.

6.2 Different Benefit Estimation Metrics

Determining the Value of a. Before testing the performance of different strategies, we
need to identify appropriate o values for the EWMA prediction algorithm by evaluat-
ing the performance of the prediction. For small values of «, the prediction algorithm
aggregates past information uniformly across the training window to craft predictions.
In other words, events in the distant past have a similar weight to events in the recent
past and the algorithm has a long memory. On the contrary, with a large «, the predic-
tion algorithm focuses on events in the recent past. Fig. 2(a) shows the evolution of the
baseline prediction for different values of «, plotting the True Positives (TP) sum of all
100 victims averaged over 100 iterations. Values between v = 0.4 and o = 0.9 per-
form best. This can be explained by remembering the “bursty nature” of web attacks,
as discussed in Section 5. As a result, we set o« = 0.9.

Baseline Prediction. We verify the effectiveness of the prediction algorithm by corre-
lating the information known prior to collaboration with the ability to predict attacks.
As expected, targets that know more about past attacks (large S;), successfully pre-
dict more future attacks. We measure correlation R > 0.9 on average, which indicates
strong correlation between knowledge and prediction. This suggests that collaboration
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helps prediction. We visualize the correlation between knowledge and prediction accu-
racy for all victims in our final dataset using the EWMA algorithm in Fig. 2(b).

Benefit Estimation Strategies. Fig. 2(c) illustrates the accuracy of predictions for dif-
ferent benefit estimation strategies over the course of one week, fixing the sharing strat-
egy to Intersection with Associated Data, as it is more conservative than sharing ev-
erything (i.e., the union). We sum the total number of TP for both “collaborators” (i.e.,
entities that do share data) and “non-collaborators” (entities that do not share data, thus
performing as in the baseline). We observe that Infersection-Size performs best, fol-
lowed by Jaccard, and Cosine/Pearson. The overall decrease in sum of true positives
after day 10 is due to less attacks reported in those days (see Fig. 5(a)).

Improvement Over Baseline. In Fig. 2(d), we compare the prediction accuracy of the
upper bounds, the baseline, and collaboration using Intersection-Size for benefit estima-
tion (again, while sharing using Intersection with Associated Data). We sum the total
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Fig. 3: ROC. The x-axis shows the FP rate defined as FPR = FP/(FP + TN), where TN is
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F'N), where FN is the number of false negatives.

number of TP for collaborators selected by the Intersection-Size metric. Remember that
with the Global Upper Bound (GUB), every victim shares with every other victim and
makes perfect predictions about known attackers, i.e., they have access to the ground
truth. With the Local Upper Bound (LUB), organizations do not share anything but still
make perfect predictions based on their local information. The accuracy of Intersection-
Size predictions tends to match LUB, showing that collaboration helps perform as well
as a local “perfect” predictor, even when considering only 50 collaboration pairs.

In Table 4, we summarize the prediction improvement given different benefit esti-
mation metrics, reporting the mean, max, and min improvement, as well as the number
of collaborators and coalition size. Pearson and Cosine provide a less significant predic-
tion improvement than set-based metrics. Mean [ for Pearson and Cosine is almost 0.4,
i.e., a (40% improvement over the baseline), while mean I for Jaccard is close to 0.6.
Notably, Intersection-Size yields I equal to 1.05, resulting into a 105% improvement
over the baseline. Naturally, the improvement can also be measured for each entity:
Maximum improvement with Intersection-Size is as high as 700%.

False Positives. Fig. 3 plots a Receiver Operating Characteristic (ROC) with the true
positive rate (TPR) against the false positive rate (FPR) for different benefit estimation
strategies (using Intersection with Associated Data to share data). Ideally, we would
like to obtain values in the top-left corner (i.e., high TPR and low FPR). Interestingly,
we observe that all sharing methods improve over the baseline (i.e., they are on upper-
left of baseline), thus improving the TPR and reducing the FPR. This is a positive result
indicating that controlled data sharing helps the prediction system perform better.

When using Intersection-Size to estimate benefits of sharing, TPR improves the
most, but FPR does not decrease significantly, whereas Jaccard significantly reduces
FPR at the cost of a lower TPR increase. We also measure the average number of FP
with Intersection-Size and obtain an average increase of 4% over the baseline. In case



Benefit Esti- | Improvement |# Collaborators| Coalition Size
mation Metric Mean[Max[Min Mean[ SD Mean[ SD [Median
Intersection-Size| 1.05 | 7 | 0 [19.47| 224 5.09 |4.09] 4
Jaccard 058 8 | 0 [30.17| 4.44 3.16 |2.74] 2
Pearson 037 | 8 | 0 [18.08] 1.40 5.20(3.15| 5
Cosine 039 8 | 0 [17.98] 1.29 526 |3.14] 5

Table 4: Prediction improvement I for collaborators, number of collaborators, and size of coali-
tions under different benefit estimation metrics. SD stands for Standard Deviation.

data is shared using Union with Associated Data, FPR decreases even more, but at the
cost of an average increase in FP of 55% with Intersection-Size.

6.3 Analysis

First, we observe that metrics with a normalization factor (i.e., all but Intersection-
Size) tend to favor partnerships with small collaborators. Intersection-Size leads to bet-
ter performance because it promotes collaboration with larger victims. To confirm this
hypothesis, we measure the set size of collaborators according to different metrics and
confirm that metrics with a normalization factor tend to suggest partnerships with col-
laborators that know less. Second, Pearson and Cosine tend to select partners that are
too similar: Maximum correlation values are close to 1, whereas maximum Jaccard
values only reach 0.5. Although this implies that targets learn to better defend against
specific adversaries, it also leads to little acquired knowledge. Third, depending on the
metric, entities may partner with previous collaborators, or with new ones. We find that
Intersection-Size, Pearson, and Cosine lead to stable groups of collaborators with about
90% reuse over time, whereas Jaccard has larger diversity of collaborators over time.
This is because about 20% of victims have high Jaccard similarity compared to 4% for
Pearson and Cosine, thus providing a larger pool of potential collaborators. Hence, if
Intersection-Size helps a few learn a lot, Jaccard helps many victims over time.

Statistical Analysis. A t-test analysis shows that the mean of the number of events
known by collaborators differs significantly (p < 0.0005) across all pairs of benefit
estimation metrics but Cosine and Pearson. If one categorizes collaborators as “large”
if they have seen more than 500 events, and “small” otherwise, and consider Cosine
and Pearson as one (given the t-test result), we obtain a 3x2 table of benefit estimation
metrics and size categories. A y2-test shows that categorization differences are statis-
tically significant: Intersection-Size tends to select larger collaborators, but also more
collaborators than Pearson/Cosine (see Table 4). Other metrics tend to select small col-
laborators. We obtain x2(2, N = 448) = 191.99, p < 0.0005, where 2 is the degrees
of freedom of the X2 estimate, and [V is the total number of observations.

Coalitions. Recall that, at each time step, different benefit estimation strategies lead
to different partnerships in our analysis. Table 4 shows the mean, Standard Deviation
(SD), and median number of collaborators per party for different collaboration metrics.
We observe that with Jaccard, coalitions are smaller and thus entities tend to select
less collaborators. Other metrics tend to have similar behavior and lead entities to col-
laborate with about 5 other entities out of 100. This is in line with previous work [21],
which showed the existence of small groups of correlated entities. We also observe that,
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after a few days (usually 2), Intersection-Size, Pearson, and Cosine converge to a rel-
atively stable group of collaborators. From one time-step to another, parties continue
to collaborate with about 90% of entities they previously collaborated. In other words,
coalitions are relatively stable over time. Comparatively, Jaccard has a larger diversity
of collaborators over time.

6.4 Different Sharing Strategies

The next step is to compare the average prediction improvement I resulting from
different data sharing strategies. As showed in Fig. 4, Intersection with Associated Data
performs almost as good as Union with Associated Data with all benefit estimation
metrics. It performs even better when using Jaccard.

Sharing using the union entails sharing more information, thus, one would expect
it to always perform better—however, organizations quickly converge to a stable set
of collaborators, and obtain a potentially lower diversity of insights over time. With
most metrics, the set of collaborators is stable over time in any case, and so union
does perform better than intersection. As previously discussed, Jaccard tends to yield a
larger diversity of collaborators over time and thus benefits more from Intersection with
Associated Data as it re-enforces such diversity of insights.

6.5 Performance of Cryptographic Tools

We estimate the operational cost of using cryptographic techniques for the secure
computation of the benefit estimation and the data sharing routines.

Excluding Pearson and Cosine metrics (due to lower accuracy improvement), the
protocols for privately estimating benefits of collaboration (Intersection-Size and Jac-
card) can all be realized based on Private Set Intersection Cardinality (PSI-CA). We
chose the instantiation proposed in [11], which incurs computation and communication
overhead linear in sets size. Privacy-preserving data sharing, i.e., Intersection with As-
sociated Data, is instantiated using the PSI-DT protocol from [12]. We implemented
protocols in C, using GMP and OpenSSL cryptographic libraries, and measured to-
tal running times using two Intel Xeon desktops with 3.10GHz CPU connected by a
100Mbps Ethernet link. Using sets of size 200, it takes approximately 400m s to execute
PSI from [12] and 550m s for the PSI-CA from [11]. Assuming that 100 organizations



are possible partners, there would be 100 - 99/2 pairwise executions of PSI-CA and
PSI-DT in the worst case, yielding a total running time close to 54s for PSI-CA and
40s for PSI-DT. That is, it would take less than one minute for one entity to estimate
benefits, using PSI-CA, with all other (99) parties, and also less than one minute to
share data with all possible 99 partners. In summary, overhead is appreciably low and
could accommodate real-world scenarios where interactions occur several times a day.

6.6 Take-aways

Our experiments confirm that targets that know more tend to successfully predict
more attacks. However, as indiscriminate sharing poses serious confidentiality, privacy,
trust, and liability challenges, we have considered a controlled data sharing approach
aiming to identify partners that help most. In our experiments, Intersection-Size proves
to be the best metric to estimate the benefits of collaboration. Interestingly, we find that
if victims’ datasets are very similar, data sharing yields little gain, since there is little to
learn. This is reinforced by the fact that similarity metrics with a normalization factor
favor collaboration with victims with small datasets.

We find that sharing data with partners using Intersection with Associated Data per-
forms almost as good as sharing everything (Union). Not only does intersection provide
convenient privacy properties, it also indicates that there is more value in learning about
current attackers than other potential attack sources. Intuitively, intersection reinforces
knowledge about attackers known to a victim, whereas, union might help victims tar-
geted by varying group of attackers. Thus, victims benefit as much from improving their
knowledge about current attackers, as learning about other sources (that could possibly
attack them next). In brief, good partners are related but not identical, and should share
information about known past attackers.

Limitations. The DShield dataset used in our experiments might be biased toward
small organizations that voluntarily report attack data. Thus, it might not be directly
evident how to generalize our results. However, our findings indicate that controlled
data sharing can remarkably improve prediction, and show statistical evidence that dif-
ferent collaboration strategies affect performance in interesting ways. We also make a
few simplifying assumptions in our experimental setup, e.g., sampling 100 random or-
ganizations from the Dshield dataset, and establish partnerships by selecting the top 1%
pairs in the benefit estimation matrix. Although we leave the evaluation of the different
partnership strategies as part of future work, our choices are conservative, thus yielding
lower-bound estimates of the benefits of collaboration.

7 Conclusion

We investigated the viability of a controlled data sharing approach for collaborative
threat mitigation. We focused on collaborative predictive blacklisting and explored how
organizations could quantify expected benefits in a privacy-preserving way (i.e., without
disclosing their datasets) before deciding whether or not to share data, and how much.
We performed an empirical evaluation on a dataset of 2 billion suspicious IP addresses,
contributed by 188,522 organizations to DShield.org over a period of two months. We
observed a significant improvement in prediction accuracy (up to 105%, even when only
1% of all possible partners collaborate), along with a reduction in the false positive rate.



Our analysis showed that some collaboration strategies work better than others. The
number of common attacks provides a good estimation of the benefits of sharing, as it
drives entities to partner with more knowledgable collaborators. In fact, only sharing
information about common attacks proves to be almost as useful as sharing everything.
Our work is the first to show that collaborative threat mitigation does not have to be an
“all-or-nothing” process: By relying on efficient cryptographic protocols, organizations
can share only relevant data, and only when beneficial.

As part of future work, we intend to study other metrics for benefit estimation (e.g.,
dissimilarity, data quality [15]) and experiment with other prediction algorithms. We
also plan to study and experiment with distributed partner selection strategies, possibly
relying on the stable roommate matching problem [16]. Finally, we will explore how to
adapt our approach to other collaborative security problems, e.g., spam filtering [10],
malware detection [17], or DDoS mitigation [26].
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A Additional Analysis of the DShield Dataset

General Statistics. We present in Fig. 5(a) the histogram of the number of attacks
per day, indicating about 30M daily attacks. We observe a significant increase around
day 50 to 100M attacks. Careful analysis reveals that a series of IP addresses starts to
aggressively attack around day 50, indicating a possible DoS attack initiation.

Fig. 5(b) shows the number of unique targets and sources over time. Detailed anal-
ysis shows a stable number of sources and targets. This stability confirms that it should
be possible to predict attackers’ tactics based on past observations. An analysis of at-
tacked ports shows that top 10 attacked ports (with more than 10M hits) are Telnet,
HTTP, SSH, DNS, FTP, BGP, Active Directory, and Netbios ports. This shows a clear
trend towards misuse of popular web services.

In Fig. 6, we plot the CDF of the fraction of victims that contribute logs to DShield
over the course of two months, and observe that few victims contribute daily.

Predictability. Fig. 7 shows the CDF of the Shannon entropy of the different log en-
try elements. Since entropy correlates with predictability (following Fano’s inequal-
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ity [34]), it helps estimate our ability to predict a given IP address, port number or target
appearing in the logs. To obtain this figure, we estimate the probability of each victim,
source or port being attacked each day. For example, for each port 7, we compute:

Attacks on Port ¢ on day j
Attacks on day j

Pr(Port ¢ on day j) = (1)
We compute the entropy for each day and then aggregate it overall using the CDF.
We observe that ports numbers have the lower entropy distribution, indicating a small
set of targeted ports: 80% of attacks target a set of 27 = 128 ports, indicating high
predictability. We also observe that victims are more predictable than sources, as 90%
of victims lie within a set of 212 = 4096 victims as compared to 90% of sources being
in a list of 2'4 = 16, 384 sources. Victims’ set is thus significantly smaller and more
predictable than attackers’ set.

Intensity. Fig. 8(a) shows the inter-arrival time of attacks in hours, and Fig. 8(b) shows
the inter-arrival time of attacks in seconds. We observe that almost all attacks occur
within 3-minute windows. IP addresses and /24 subnetworks have similar behavior. In
particular, Fig. 8(b) shows that in short time intervals, 85% of /8 subnetworks have
short attack inter-arrival time indicating the bursty attacks on such networks. Attackers
target subnetworks for a short time and then disappear.



