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Abstract. Over the past few years, online service providers have started gather-
ing increasing amounts of personal information to build user profiles and mon-
etize them with advertisers and data brokers. Users have little control of what
information is processed and are often left with an all-or-nothing decision be-
tween receiving free services or refusing to be profiled. This paper explores an
alternative approach where users only disclose an aggregate model – the “gist”
– of their data. We aim to preserve data utility and simultaneously provide user
privacy. We show that this approach can be efficiently supported by letting users
contribute encrypted and differentially-private data to an aggregator. The aggre-
gator combines encrypted contributions and can only extract an aggregate model
of the underlying data. We evaluate our framework on a dataset of 100,000 U.S.
users obtained from the U.S. Census Bureau and show that (i) it provides accurate
aggregates with as little as 100 users, (ii) it can generate revenue for both users
and data brokers, and (iii) its overhead is appreciably low.
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1 Introduction

The digital footprint of Internet users is growing at an unprecedented pace, driven
by the pervasiveness of online interactions and large number of posts, likes, check-ins,
and content shared everyday. This creates invaluable sources of information that online
service providers use to profile users and serve targeted advertisement. This economic
model, however, raises major privacy concerns [11,16,40] as advertisers might exces-
sively track users, data brokers might illegally market consumer profiles [45], and gov-
ernments might abuse their surveillance power [17,18] by obtaining datasets collected
for other purposes (i.e., monetization). Consequently, consumer advocacy groups are
promoting policies and legislations providing greater control to users and more trans-
parent collection practices [30,40].

Along these lines, several efforts – such as OpenPDS, personal.com, Sellbox, and
Handshake – advocate a novel, user-centric paradigm: users store their personal infor-
mation in “data vaults”, and directly manage with whom to share their data. This ap-
proach has several advantages, namely, users maintain data ownership (and may mon-
etize their data), while data brokers and advertisers benefit from more accurate and
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detailed personal information [26,42]. Nevertheless, privacy still remains a challenge
as users need to trust data vaults operators and relinquish their profiles to advertis-
ers [7,38].

To address such concerns, the research community has proposed to maintain data
vaults on user devices and share data in a privacy-preserving way. Prior work can be
grouped into three main categories: (1) serving ads locally, without revealing any in-
formation to advertisers/data brokers [19,28,41]; (2) relying on a trusted third party to
anonymize user data [4,35]; and (3) relying on a trusted third party for private user data
aggregation [2,9,10]. Unfortunately, these approaches suffer from several limitations.
First, localized methods prevent data brokers and advertisers from obtaining user statis-
tics. Second, anonymization techniques provide advertisers with significantly reduced
data utility and are prone to re-identification attacks [29]. Finally, existing private aggre-
gation schemes rely on a trusted third party for differential privacy (e.g., a proxy [10],
a website [2], or mixes [9]; also, aggregation occurs after decryption, thus making it
possible to link contributions and users.

Motivated by the above challenges, this paper proposes a novel approach to privacy-
preserving aggregation of user data. Rather than contributing data as-is, users combine
their data into an aggregate model – the “gist.” Intuitively, users contribute encrypted
and differentially-private data to an aggregator that extracts a statistical model of the
underlying data (e.g., probability density function of the age of contributing users). Our
approach addresses issues with existing work in that it does not depend on a third-party
for differential privacy, incurs low computational overhead, and addresses linkability
issues between contributions and users. Moreover, we propose a metric to dynamically
value user statistics according to their inherent amount of “valuable” information (i.e.,
sensitivity): for instance, aggregators can assess whether age statistics in a group of
participants are more sensitive than income statistics. To the best of our knowledge,
our solution provides the first privacy-preserving aggregation scheme for personal data
monetization.

Our contributions can be summarized as follows:

1. We design a privacy-preserving framework for monetizing user data, where users
trade an aggregate of their data instead of actual values.

2. We define a measure of the sensitivity of different data aggregates. In particular,
we adopt the information-theoretic Jensen-Shannon divergence [24] to quantify the
distance between the actual distribution of a data attribute, and a distribution that
does not reveal actionable information [15], such as the uniform distribution.

3. We show how to rank aggregates based on their sensitivity, i.e., we design a dy-
namic valuation scheme based on how much information an aggregate leaks.

We evaluate our privacy-preserving framework on a real, anonymized dataset of
100,000 US users (obtained by the Census Bureau) with different types of attributes.
Our results show that our framework (i) provides accurate aggregates with as little as
100 participants, (ii) generates revenue for users and data aggregators depending on the
number of contributing users and sensitivity of attributes, and (iii) has low computa-
tional overhead on user devices (0.3 ms for each user, independently of the number of
participants). In summary, our approach provides a novel perspective to the privacy-
preserving monetization of personal data, and finds a successful balance between data



accuracy for advertisers, privacy protection for users, and incentives for data aggrega-
tors.

Paper Organization. The rest of the paper is organized as follows. Next section in-
troduces the system architecture and the problem statement. Then, Section 3 presents
our framework and Section 4 reports on our experimental evaluation. After reviewing
related work in Section 5, we conclude the paper in Section 6.

2 System Architecture

This section introduces the problem definition and presents participating entities.

2.1 Problem Statement

We consider a system comprised of three entities: A set of users U = {1, . . . , N},
a data aggregator A, and a customer C. The system architecture is illustrated in Fig. 1.
Customers query the data aggregator for user information, while users contribute their
personal information to the data aggregator. The aggregator acts as a proxy between
users and customers by aggregating (and monetizing) user data. The main goal of this
paper is to propose practical techniques to aggregate and monetize user personal data
in a privacy-preserving way, i.e., without revealing personal information to other users
or third parties.

2.2 System Model

Users. We assume that users store a set of personal attributes such as age, gender, and
preferences locally. Each user i ∈ U maintains a profile vector pi = [xi,1, . . . , xi,K ],
where xi,j ∈ D is the value of attribute j andD is a suitable domain for j. For example,
if j represents the age of user i, then xi,j ∈ {1, . . . ,Mj}, Mj = 120, and D ⊂ N.

In practice, users can generate their personal profiles manually, or leverage profiles
maintained by third parties. Several social networks allow subscribers to download their
online profile. A Facebook profile, for example, contains numerous Personally Identifi-
able Information (PII) items (such as age, gender, relationships, location), preferences
(movies, music, books, tv shows, brands), media (photos and videos) and social inter-
action data (list of friends, wall posts, liked items).

Following the results of recent studies on user privacy attitudes [3,7,26], we assume
that each user i can specify a privacy-sensitivity value 0 ≤ λi,j ≤ 1 for each attribute
j. A large λi,j indicates high privacy sensitivity (i.e., lower willingness to disclose). In
practice, λi,j can assume a limited number of discrete values, which could represent the
different levels of sensitivity according to Westin’s Privacy Indexes [22].

We assume that users want to monetize their profiles while preserving their privacy.
For instance, users may be willing to trade an aggregate of their online behavior, such as
the frequency at which they visit different categories of websites, rather than the exact
time and URLs.

Finally, we assume that user devices can perform cryptographic operations consist-
ing of multiplications, exponentiations, and discrete logarithms.
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Fig. 1: System architecture and basic protocol. Users contribute encrypted profiles to the aggre-
gator. The aggregator combines encrypted profiles and obtains plaintext data models, which it
monetizes with customers.

Data Aggregator. A data aggregator A is an untrusted third-party that performs the
following actions: (1) it collects encrypted attributes from users, (2) it aggregates con-
tributed attributes in a privacy-preserving way, and (3) it monetizes users’ aggregates
according to the amount of “valuable” information that each attribute conveys.

We assume that users and A sign an agreement upon user registration that authorizes
A to access the aggregated results (but not users’ actual attributes), to monetize them
with customers, and to take a share of the revenue from the sale. It also binds A to
redistribute the rest of the revenue among contributing users.

Customer. We consider a customer C willing to obtain aggregate information about
users and to pay for it. C can have commercial contracts with multiple data brokers.
Similarly, a data aggregator can have contracts with multiple customers. C interacts
with a data aggregator A and does not communicate directly with users. C obtains
available attributes, and initiates an aggregation by querying the data aggregator for
specific attributes.

2.3 Applications

The proposed system model is well-suited to many real-world scenarios, including
market research and online tracking use cases. For instance, consider a car dealer C that
wants to assess user preferences for car brands, their demographics, and income distri-
butions. A data aggregator A might collect aggregate information about a representative
set of users U and monetize it with the car dealer C. Companies such as Acxiom cur-
rently provide this service, but raise privacy concerns [39]. Our solution enables such
companies to collect aggregates of personal data instead of actual values and reward
users for their participation.

Another example is that of an online publisher (e.g., a news website) C that wishes
to know more about its online readership [2]. In this case, the aggregator A is an online
advertiser that collects information about online users U and monetizes it with online
publishers.

Finally, our proposed model can also be appealing to data aggregators in health-
care [12]. Healthcare data is often fragmented in silos across different organizations
and/or individuals. An healthcare aggregator A can compile data from various sources
and allow third parties C to buy access to the data. At the same time, data contributors
(U) receive a fraction of the revenue. Our approach thwarts privacy concerns and helps
with the pricing of contributed data.



2.4 Threat Model

In modeling security, we consider both passive and active adversaries.

Passive adversaries. Semi-honest (or honest-but-curious) passive adversaries monitor
user communications and try to infer the individual contributions made by other users.
For instance, users may wish to obtain attribute values of other users; similarly, data
aggregators and customers may try to learn the values of the attributes from aggregated
results. A passive adversary executes the protocol correctly and in the correct order,
without interfering with inputs or manipulating the final result.

Active adversaries. Active (or malicious) adversaries can deviate from the intended
execution of the protocol by inserting, modifying or erasing input or output data. For
instance, a subset of malicious users may collude with each other in order to obtain
information about other (honest) users or to bias the result of the aggregation. To achieve
their goal, malicious users may also collude with either the data aggregator or with the
customer. Moreover, a malicious data aggregator may collude with a customer in order
to obtain private information about the user attributes.

3 Monetizing User Profiles with Privacy

We outline and formalize the data monetization framework, which consists of a
protocol that is executed between users U, a data aggregator A and a customer C. We
first provide an intuitive description and then detail each individual component.

3.1 High-Level Description

We propose a protocol where users trade personal attributes in a privacy-preserving
way, in exchange for (possibly) monetary retributions. Intuitively, there are two possible
modes of implementations: interactive and batch.

In interactive mode, a customer initiates a query about specific attributes and users.
The aggregator selects users matching the query, collects encrypted replies, computes
aggregates, and monetizes them according to a pricing function.

In batch mode, users send their encrypted profile, containing personal attributes,
to the data broker. The aggregator combines encrypted profiles, decrypts them, obtains
aggregates for each attribute, and ranks attributes based on the amount of “valuable” in-
formation they provide. A customer is then offered access to specific attributes. Without
loss of generality, hereafter we describe the interactive mode.

Initialization: The data aggregator A and users i ∈ U engage in a secure key estab-
lishment protocol to obtain individual random secret keys sj , where s0 is only known
to A and si (∀i ∈ U) is only known to user i, such that s0 + s1 + . . . + sN = 0 (this
condition is required for the data aggregation described hereafter). Any secure key es-
tablishment protocol or trusted dealer can be used in this phase to distribute the secret
keys, as long as the condition on their sum is respected. The initialization phase is the
same as in [36]. Each user i generates its profile vector pi ∈ DK containing personal
attributes j ∈ {1, . . . ,K}.



1. Customer Query: A customer queries the aggregator. The query contains informa-
tion about the type of aggregates and users. In practice, it could be formatted as an
SQL query.

2. User Selection: The aggregator selects users based on the customer query. To do
so, we consider that users shared some basic information with the aggregator, such
as their demographics. Another option is for the aggregator to forward the customer
query to users, and let users decide whether to participate or not.

3. Aggregator Query: The aggregator forwards the customer’s query to the users,
together with a public feature extraction function f .

4. Feature Extraction: Each user i can optionally execute a public feature extraction
function f : DK → OL on pi, where L is the dimension of the output feature
space O, thus resulting in a feature vector fi. In our implementation, we consider a
simple function that extracts the value of an attribute and its square.

5. Encryption and Obfuscation: Each user adds noise to fi, obtaining f̂i, and en-
crypts it. Encryption and obfuscation provide strong guarantees both in terms of
data confidentiality and differential privacy [13]. Each user sends the encrypted
vector E(f̂i) to A.

6. Aggregation, Decryption, and Pricing: A combines all E(f̂i) and decrypts the
result, generating a 2-tuple (Vj ,Wj) ∈ R2 for each attribute j. These tuples are
used to approximate the probability density function of attributes across users. A
uses (Vj ,Wj) to create a discrete sampled probability distribution function dNj
for each attribute j. A then computes a distance measure dj = d(dNj , dUj) ∈
[0, 1] between dNj and dUj , where dUj is a discrete uniform distribution in the
interval [mj ,Mj ]. A small/large distance corresponds to an attribute with low/high
information “value”, as described later in the text.
A determines the cost Cost(j) of each attribute j by taking into account both the
distances dj , the number of contributing users, and the price per attribute.

7. Answer: A sends a set of 2-tuples {(dρz , Cost(ρz))}Kρz=1 to C, which selects ag-
gregates to purchase. After the purchase, A obtains a share of the total sale revenue
and equally distributes the remainder to users.

3.2 Detailed Description

We detail the functions and primitives for the aggregation and monetization of user
data. In this paper, we compute aggregates by estimating the probability density func-
tion (pdf ) of user attributes. We use the Gaussian approximation to estimate pdfs for
two reasons. First, existing work shows that this will lead to precise aggregates with few
users. The CLT [23,34] states that the arithmetic mean of a sufficiently large number of
independent random variables, drawn from distributions of expected value µ and vari-
ance σ2, will be approximately normally distributedN (µ, σ2). Second, a Gaussian pdf
N is fully defined by two parameters and thus we do not need additional coordination
among users (after the initialization phase). For information leakage ranking, we use a
well-established information-theoretic distance function.

For conciseness, we focus on the description of privacy-preserving aggregation and
pricing (phases 4 to 6, i.e., feature extraction, encryption, aggregation and ranking).



With respect to the initialization and query forwarding phases (1-3), our method is
general enough and can be adapted to any specific implementation.

Phase 4-5: Feature Extraction and Encryption. Each user i generates a profile vec-
tor pi = [xi,1, . . . , xi,K ]. Each attribute j takes value xi,j ∈ {mj , . . . ,Mj}, where
mj ,Mj ∈ Zp are the minimum and maximum value. Note that as in [36], computations
are in cyclic group Zp of prime order p. The aggregator also chooses a generator g at
random, such that g ∈ Zp, and H is a Hash function. Remember that in practice, a
user can derive pi either from an existing online profile (e.g., Facebook) or by manu-
ally entering values xi,j . In our evaluation, we use values from the U.S. Census Bureau
[43,44].

We consider a simple feature extraction f that consists in providing xj and com-
puting x2j . Obviously, other feature extraction method may contribute higher-order mo-
ments or simply combine attributes together to obtain richer xj’s.

To guarantee (ε, δ)-Differential Privacy, each user i adds noise ri,j , oi,j to attribute
values sampled from a symmetric Geometric distribution according to Algorithm 1
in [36]. In particular, in the following we add noise to both xi,j and x2i,j , as they will
be subsequently combined to obliviously compute the parameters of the model that
underlies the actual data:

x̂i,j = xi,j + ri,j mod p

and

x̂i,j
(2)

= x2i,j + oi,j mod p

where p is the prime order [36].
With x̂i,j and x̂i,j

(2), each user generates the following encrypted vectors (ci,bi):

ci =


ci,1
ci,2

...
ci,K

 =


gx̂i,1H(t)si

gx̂i,2H(t)si

...
gx̂i,KH(t)si

, bi =


bi,1
bi,2

...
bi,K

 =


gx̂i,1

(2)

H(t)si

gx̂i,2
(2)

H(t)si

...
gx̂i,K

(2)

H(t)si


Each user i then sends (ci,bi) to A. Note that the encryption scheme guarantees

that A is unable to decrypt the vectors (ci,bi). However, thanks to its own secret share
s0, A can decrypt aggregates as explained hereafter.

Phase 6: Privacy-Preserving Aggregation and Pricing. To compute the sample mean
µ̂j and variance σ̂2

j without having access to the individual values x̂i,j , x̂i,j
(2) of any

user i, A first computes intermediate 2-tuple (Vj ,Wj):

Vj = H(t)s0ΠN
i=1ci,j = H(t)

∑N
k=0 skg

∑N
i=1 x̂i,j = g

∑N
i=1 x̂i,j

Wj = H(t)s0ΠN
i=1bi,j = H(t)

∑N
k=0 skg

∑N
i=1 x̂i,j

(2)

= g
∑N

i=1 x̂i,j
(2)



To obtain (µ̂j , σ̂2
j ), A takes the discrete logarithm base g of (Vj ,Wj):

µ̂j =
logg(Vj)

N
=

∑N
i=1 x̂i,j
N

σ̂2
j =

logg(Wj)

N
− µ̂j2 =

∑N
i=1 x̂i,j

(2)

N
− µ̂j2

Finally, using the derived (µ̂j , σ̂2
j ), A computes the Normal pdf approximation Nj ∼

N (µ̂j , σ̂2
j ) for each attribute j.

Ranking. In order to estimate the amount of “valuable” information (i.e., sensitivity)
that each attribute leaks, we propose to measure the distance (i.e., divergence) between
the Normal approximation Nj and the Uniform distribution U . This makes sense be-
cause divergence measures distance between distributions: By comparing Nj to the
Uniform, we measure how much information Nj leaks compared to the distribution U
that leaks the least amount of information [20]. This approach applies to a variety of
computing scenarios. For example, a related concept was studied in [15,21] for measur-
ing the “interestingness” of textual data by comparing it to an expected model, usually
with the Kullback-Liebler (KL) divergence.

To the best of our knowledge, we are the first to explore this approach in the context
of information privacy. Instead of the KL divergence, we rely on the Jensen-Shannon
(JS) divergence for two reasons: (1) JS is a symmetric and (2) bounded equivalent of
the KL divergence. It is defined as:

JS(u, q) =
1

2
KL(u,m) +

1

2
KL(q,m) = H(

1

2
u+

1

2
q)− 1

2
H(u)− 1

2
H(q)

where m = u/2 + q/2 and H is the Shannon entropy. As JS is in [0, 1] (when using
the logarithm base 2), it quantifies the relative distance between Nj and Uj , and also
provides absolute comparisons with distributions different from the uniform.

As JS operates on discrete values, A must first discretize distributions Nj and Uj .
Given the knowledge of intervals {mj , . . . ,Mj} for each attribute j, we can use Rie-
mann’s centered sum to approximate a definite integral, where the number of approxi-
mation bins is related to the accuracy of the approximation. We choose the number of
bins to be Mj −mj , and thus guarantee a bin width of 1. We approximate Nj by the
discrete random variable dNj with the following probability mass function:

Pr(dNj) =


Pr(xj = mj)

Pr(xj = mj + 1)
...

Pr(xj =Mj)

 =


pdfj(

1
2 (mj +mj − 1))

pdfj(
1
2 (mj + 1 +mj))

...
pdfj(

1
2 (Mj +Mj − 1))


where pdfj is the probability density function Nj and xj ∈ {mj , . . . ,Mj}. We then
normalize Pr(dNj) such that

∑
k Pr(xj = k) = 1, for each j. For the uniform dis-

tribution Uj , the discretization to dUj is straightforward, i.e., Pr(dUj) = (1/(Mj −
mj), . . . , 1/(Mj −mj))

T , where dim(dUj) =Mj −mj .



A can now compute distances dj = JS(dNj , dUj) ∈ [0, 1] and rank attributes in
increasing order of information leakage such that dρ1 ≤ dρ2 ≤ . . . ≤ dρK , where
ρ1 = argminj dj and ρz (for 2 ≤ z ≤ K) are defined as ρz = argminj 6={ρk}z−1

k=1
(dj)

At this point, A computed the 3-tuple (dρj , µ̂j , σ̂
2
j ) for each attribute j. Each user

i can now decide whether it is comfortable sharing attribute j given distance dj and
privacy sensitivity λi,j . To do so, each user i sends λi,j to A for comparison. A then
checks which users are willing to share each attribute j and updates the ratio γj =
Sj/N , where Sj is the number of users that are comfortable sharing, i.e., Sj = |{i ∈
U s.t. dj ≤ 1−λi,j}|. In practice, A could then use the majority rule to decide whether
or not to monetize attribute j.

Pricing. After this ranking phase, the data broker A concludes the process with the
pricing and revenue phases. Prior work shows that users assign unique monetary value
to different types of attributes depending on several factors, such as offline/online ac-
tivities [7], type of third-parties involved [7], privacy sensitivity [3], amount of details
and fairness [26].

We measure the value of aggregates depending on their sensitivity, the number of
contributing users, and the cost of each attribute. Without loss of generality, we estimate
the value of an aggregate j using the following linear model:

Cost(j) = Price(j) · dj ·N

where Price(j) is the monetary value that users assign to attribute j. Without loss of
generality, we assume in our pricing scheme a relative value of 1 for each attribute.
Existing work discussed the value of user attributes, and estimated a large range from $
0.0005 to $33 [7,31] highlighting the difficulty in determining a fixed price. In practice,
this is likely to change depending on the monetization scenario.

A then sends the set of 2-tuples {(dρz , Cost(ρz))}Kρz=1 to C. Based on the tuples,
C selects the set P of attributes it wishes to purchase. After the purchase is complete, A
re-distributes revenue R among users and itself, according to the agreement stipulated
with the users upon their first registration with A.

We consider a standard revenue sharing monetization scheme, where the revenue is
split among users and the data aggregator (i.e., aggregator takes commissions):

R(A) =
∑
j∈P

ωj · Cost(j), R(i) =
1

N

∑
j∈P

(1− ωj) · Cost(j), ∀i ∈ U

where ωj is the commission percentage of A. This system is popular in existing aggre-
gating schemes [12], credit-card payments, and online stores (e.g., iOS App Store). We
assume a fixed ωj for each attribute j.

4 Evaluation

To test the relevance and the practicality of our privacy-preserving monetization so-
lution, we measure the quality of aggregates, the overhead, and generated revenue. In



particular, we study how the number of protocol participants and their privacy sensi-
tivities affect the accuracy of the Gaussian approximations, the computational perfor-
mance, the amount of information leaked for each attribute, and revenue.

4.1 Setup

We consider secret shares in Zp where p is a 1024 bits modulus, the number of
users N ∈ [10, 100000], and each user i with profile pi. We implemented our privacy-
preserving protocol in Java, and rely on public libraries for secret key initialization, for
multi-threading decryption, and on the MALLET [27] package for computation of the
JS divergence.

We run our experiments on a machine equipped with Mac OSX 10.8.3, dual-core
Core i5 processor, 2.53 GHz, and 8 GB RAM. Measurements up to 100 users are av-
eraged over 300 iterations, and the rest (from 1k to 100k users) are averaged over 3
iterations due to large simulation times.

We populate user profiles with U.S. Census Bureau information [43,44]: We ob-
tained anonymized offline and online attributes about 100,000 people. We pre-processed
the acquired data by removing incomplete profiles (i.e., some respondents prefer not to
reveal specific attributes).

Without loss of generality, we focus on three types of offline attributes: Yearly in-
come level, education level and age. We selected these attributes because (1) a recent
study [7] shows that these attributes have high monetary value (and thus privacy sensi-
tivity), and (2) they have significantly different distributions across users. This allows
us to compare retribution models, and measure the accuracy of the Gaussian approxi-
mation for a variety of distributions.

Table 1 shows the mean and standard deviation for the three considered attributes
with a varying number of users. Note that the provided values for income and education
use a specific scale defined by the Census Bureau. For example, a value of 1 and 16 for
education correspond to “Less than 1st grade” and “Doctorate”, respectively.

We could consider other types of attributes as well, such as internet, music and
video preferences from alternative sources, such as Yahoo Webscope [47]. Although
an exhaustive comparison of the monetization of all different attributes is an exciting
perspective, it is out of the scope of this paper and we leave this for future work.

4.2 Results

We evaluate four aspects of our privacy-preserving scheme: model accuracy, infor-
mation leakage, overhead and pricing.

Model Accuracy. In our proposal, we approximate empirical probability density func-
tions with Gaussian distributions. The accuracy of approximations is important to assess
the relevance of derived data models. In Fig. 2, we compare the actual distribution of
each attribute with their respective Gaussian approximation and vary the number of
users from 100 to 100,000. Note that in order to compare probabilities over the domain
[mj ,Mj ], we scaled both the actual distribution and the Gaussian approximation such



 
  Number of randomly selected users in the dataset 
  10 100 1k 10k 50k 100k 

In
co

m
e µ 6.50 9.72 10.30 10.87 10.83 10.89 

σ 19.17 18.70 20.04 17.05 16.72 16.52 
(mj, Mj) (1, 10) (1, 15) (1, 15) (1, 16) (1, 16) (1, 16) 

E
du

c.
 µ 5.70 7.23 10.29 10.38 10.21 10.18 

σ 15.57 7.07 7.96 7.68 7.73 7.63 
(mj, Mj) (1, 9) (1, 12) (1, 15) (1, 16) (1, 16) (1, 16) 

A
ge

 µ 38.10 35.40 41.91 42.44 41.49 39.79 
σ 252.54 502.79 563.32 546.40 553.68 539.60 
(mj, Mj) (11, 67) (1, 85) (0, 85) (0, 85) (0, 85) (0, 85) 

Table 1: Summary of the U.S. Census dataset used for the evaluation. We considered three types
of attributes (level of income, education and age), which reflect different types of sample distri-
butions (as shown in Fig. 2).

that their respective sums over that domain are equal to one. We observe that, visually,
the Gaussian approximation captures general trends in the actual data.

We measure the accuracy of the Gaussian approximation in more details with the
JS divergence (Fig. 3a). We observe that with 100 users, the approximation reaches a
plateau for education, whereas income and age require 1k users to converge. For the
two latter attributes, the approximation accuracy triples when increasing from 100 to
1k users. Moreover, as the number of user increases, the fit of the Gaussian model for
income and age is two times better (JS of 0.05 bits) than for education (JS of 0.1 bits).
The main reason is that education has more data points with large differences between
actual and approximated distributions than income and age (as shown in Fig. 2).

These results indicate that, for non-uniform distributions, the Gaussian approxima-
tion is accurate with a relatively small number of users (about 100). It is interesting to
study this result in light of the Central Limit Theorem (CLT). Remember that the CLT
states that the arithmetic mean of a sufficiently large number of variables will tend to be
normally distributed. In other words, a Gaussian approximation quickly converges to the
original distribution and this confirms the validity of our experiments. This also means
that C can obtain accurate models even if it requests aggregates about small groups of
users. In other words, collecting data about more than 1k users does not significantly
improve the accuracy of approximations, even for more extreme distributions.

Information Leakage. We compare the divergence between Gaussian approximations
and uniform distributions to measure the information leakage of different attributes. Fig.
3b shows the sensitivity for each attribute with a varying number of users. We observe
that the amount of information leakage stabilizes for all attributes after a given number
of participants. In particular, education and age reach a maximum information leakage
with 1k users, whereas 10k users are required for income to achieve the same leakage.

Overall, we observe that education is by far the attribute with the largest distance to
the uniform distribution, and therefore arguably the most valuable one. In comparison,
Income and age are 50% and 75% less “revealing”. Information leakage for age de-
creases from 100 to 1k users, as age distribution in our dataset tends towards a uniform
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(a) Attribute income, sampled from 100 users (left), 1k users (middle) and 100k users (right).
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(b) Attribute education, sampled from 100 users (left), 1k users (middle) and 100k users (right).
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(c) Attribute age, sampled from 100 users (left), 1k users (middle) and 100k users (right).

Fig. 2: Gaussian approximation vs. actual distribution for each considered attribute.

distribution. In contrast, education and income are significantly different from a uni-
form distribution. An important observation is that the amount of valuable information
does not increase monotonically with the number of users: For age, it decreases by 30%
when the number of users increases from 100 to 1k, and for education it decreases by
3% when transitioning from 10k to 50k users.

These findings show that larger user samples do not necessarily provide better dis-
criminating features. This also shows that users should not decide whether to partici-
pate in our protocol solely based on a fixed threshold over total participants, as this may
prove to leak slightly more private information.

Overhead. We measure the computation overhead for both users and the data broker.
For each user, we find that one execution of the protocol requires 0.284 ms (excluding
communication delays), out of which 0.01 ms are spent for the profile generation, 0.024
ms for the feature extraction, 0.026 ms for the differential-privacy noise addition, and
0.224 ms for encryption of the noisy attribute. In general, user profiles are not subject
to change within short time intervals, thus suggesting that user-side operations could be
executed on resource-constrained devices such as mobile phones.
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(a) Divergence between the Gaussian approx-
imation and the actual distribution of each at-
tribute j, computed as the JS(dNj ,Actualj).
Lower values indicate better accuracy.
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(b) Information leakage for each type of at-
tribute j (income, education and age), de-
fined as JS(dNj , dUj). Lower values indicate
smaller information leaks.
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(d) Relative revenue (per attribute) for each user
i ∈ U and the data aggregator A, assuming that
an attribute is valued at 1.

Fig. 3: Results of the evaluation of the proposed framework on the U.S. Census dataset.

From Fig. 3c, observe that the data broker requires about one second to complete its
phases when there are only 10 users, 1.5 min with 100 users, 15 min with 1k users, and
27.7 h for 100k users. Note, however, that running times can be remarkably reduced
using algorithmic optimization and parallelization, which is part of our future work. In
our results, decryption is the most time-consuming operation for the data broker as it
incurs (O(N ·Mj)): this could be reduced to O(

√
N ·Mj) by using the Pollard’s Rho

method for computing the discrete logarithm [33]. Also, decryption can be speedup up
by splitting decryption operations across multiple machines (i.e., the underlying algo-
rithm is highly-parallelizable).

Pricing. Recall that the price of an attribute aggregate depends on the number of con-
tributing users, the amount of information leakage, and the cost of the attribute. We
consider that each attribute j has a unit cost of 1 and the data broker takes a com-
mission ωj . We consider three types of privacy sensitivities λ: (i) a uniform random
distribution of privacy sensitivities λi,j for each user i and for each attribute j, (ii) an
individual privacy sensitivity λi for each user (same across different attributes), and (iii)



an all-share scenario (λi = 0 and all users contribute). The commission percentage is
set to ωj = ω = 0.1.

Fig. 3d shows the average revenue generated from one attribute by the data broker
and by users. We observe that user revenue is small and does not increase with the
number of participants. In contrast, the data broker revenue increases linearly with the
number of participants. In terms of privacy sensitivities, we observe that with higher
privacy sensitivities (λi > 0), fewer users contribute, thus generating lower revenue
overall and per user. For example, users start earning revenue with 10 participants in
the all-share scenario, but more users are required to start generating revenue if users
adopt higher privacy sensitivities.

We observe that users are incentivized to participate as they earn some revenue
(rather than not benefiting at all), but the generated revenue does not generate significant
income, thus, it might encourage user participation from “biased” demographics (e.g.,
similar to Amazon Mechanical Turk). In contrast, the data broker has incentives to
attract more users, as it revenue increases with the number of participants. However,
customers are incentivized to select fewer users because cost increases with the number
of users, and 100 users provide as good an aggregate as 1000 users. This is an intriguing
result, as it encourages customers to focus on small groups of users representative of a
certain population category.

4.3 Security

Passive adversaries. To ensure privacy of the personal user attributes, our framework
relies on the security of the underlying encryption and differential-privacy methods
presented in [36]. Hence, no passive adversary (a user participating in the monetization
protocol, the data aggregator or an external party not involved in the protocol) can
learn any of the user attributes, assuming that the key setup phase has been performed
correctly and that a suitable algebraic group (satisfying the DDH assumption) with a
large enough prime order (1024 bits or more) has been chosen.

Active adversaries. As per [36], our framework is resistant to collusion attacks among
users and between a subset of users and the data broker, as each user i encrypts its
attribute values with a unique and secret key si. However, pollution attacks, which
try to manipulate the aggregated result by encrypting out-of-scope values, can affect
the aggregate result of our protocol. Nevertheless, such attacks can be mitigated by
including, in addition to encryption, range checks based on efficient (non-interactive)
zero-knowledge proofs of knowledge [5,6,25]: each user could submit, in addition to
the encrypted values, a proof that such values are indeed in the plausible range specified
by the data aggregator. However, even within a specific range, a user can manipulate its
contributed value and thus affect the aggregate. Although nudging users to reveal their
true attribute value is an important challenge, it is outside of the scope of this paper.

5 Related Work

Our work builds upon two main domains, in order to provide the privacy and incen-
tives for the users and data aggregators: (1) privacy-preserving aggregation [14,36,37,46],



and (2) privacy-preserving monetization of user profiles [4,19,35,41]. Hereafter we dis-
cuss these two sets of works.

5.1 Privacy-Preserving Aggregation

Erkin and Tsudik [14] design a method to perform privacy-preserving data aggrega-
tion in the smart grid. Smart meters jointly establish secret keys without having to rely
on a trusted third party, and mask individual readings using a modified version of the
Paillier encryption scheme [32]. The aggregator then computes the sum of all readings
without seeing individual values. Smart meters must communicate with each other, thus
limiting this proposal to online settings. Shi et al. [37] compute the sum of different in-
puts based on data slicing and mixing with other users, but have the same limitation: all
participants must actively communicate with each other during the aggregation.

Another line of work [9,10] introduces privacy-preserving aggregation by combin-
ing homomorphic encryption and differential privacy, i.e., users encrypt their data with
the customer public key and send it to a trusted aggregator. The aggregator adds differ-
ential noise to encrypted values (using the homomorphic property), and forwards the
result to the customer. The customer decrypts contributions and computes desired ag-
gregates. These proposals, however, suffer from a number of shortcomings as: (i) they
rely on a trusted third party for differential privacy; (ii) they require at least one pub-
lic key operation per single bit of user input, and one kilobit of data per single bit of
user answer, or rely on XOR encryption; and (iii) contributions are linkable to users as
aggregation occurs after decryption.

The work by Shi et al. [36] supports computing the sum of different inputs in
a privacy-preserving fashion, without requiring communication among users, nor re-
peated interactions with a third party. It also provides differential privacy guarantees
in presence of malicious users, and establishes an upper bound on the error induced
by the additive noise. This work formally shows that a Geometric distribution provides
(ε, δ)-differential privacy (DD) in Zp. We extend the construction in [36] to support the
privacy-preserving computation of probability distributions (in addition to sums). Intu-
itively, we use the proposed technique to compute the parameters of Gaussian approx-
imations in a privacy-preserving way. As we maintain the same security assumptions,
our framework preserves provable privacy properties. As part of future work, we intend
to explore the properties of regression modeling and privacy-preserving computation of
regression parameters [1,46], in addition to distributions.

5.2 Privacy-Preserving Monetization

Previous work investigated two main approaches to privacy-preserving Online Be-
havioral Advertisement (OBA). The first approach minimizes the data shared with
third parties, by introducing local user profile generation, categorization, and ad selec-
tion [2,19,28,41]. The second approach relies on anonymizing proxies to shield users’
behavioral data from third parties, until users agree to sell their data [4,35].

Toubiana et al. [41] propose to let users maintain browsing profiles on their device
and match ads with user profiles, based on a cosine-similarity measure between visited
websites meta-data (title, URL, tags) and ad categories. Users receive a large number



of ads, select appropriate ones, and share selected ads with ad providers (not reveal-
ing visited websites nor user details). Guha et al. [19] propose to do the ad matching
with an anonymization proxy instead. Although the cost of such system is estimated
at $0.01/user per year, such solution demands significant changes from web browser
vendors and online advertisers. Akkus et al. propose to let users rely on the website
publisher to anonymize their browsing patterns vis-à-vis the ad-provider. Their proto-
col introduces significant overhead: The website publisher must repeatedly interact with
each visitor and forward encrypted messages to the ad-provider.

Instead of local profiles, Riederer et al. [35] propose a fully centralized approach,
where an anonymization proxy mediates interactions between users and website pub-
lishers. The proxy releases the mapping between IP addresses and long-term user iden-
tifiers only after users agree to sell their data to a customer, thus allowing the customer
to link different visits by the same users. However, users have to entrust a third party
with their personal information.

In contrast, our framework does not rely on any additional user-side software, does
not impose computationally expensive cryptographic computation on user devices, and
prevents the customer from learning individual user data.

6 Conclusion

As the amount and sensitivity of personal data shared with service providers in-
creases, so do privacy concerns. Users usually have little control over what information
is processed by service providers and how it is monetized with advertisers. Our work
offers a privacy-preserving alternative where users only disclose an aggregate model of
their profiles, by means of encrypted and differentially private contributions. Our so-
lution tackles trust and incentive challenges: rather than selling data as-is, users trade
a model of their data. Users also monetize their profiles by dynamically assessing the
value of data aggregates. To this end, we use an information-theoretic measure to com-
pute the amount of valuable information provided to advertisers.

We evaluate our framework on a real and anonymized dataset with more than 100,000
users (obtained from the U.S. Census Bureau) and show, with an experimental evalu-
ation, that our solution (i) provides accurate aggregates with as little as 100 users, (ii)
introduces low overhead for both users (less than 1ms on commodity hardware) and
data aggregators, and (iii) generates revenue for both users and aggregators.

As part of future work, we plan to enhance our scheme with new features, including
fault-tolerant aggregation [8] to allow users to join/leave dynamically and range checks
for the encrypted user attributes, based on efficient zero-knowledge proofs, against ac-
tive pollution attacks. Users could also contribute higher order moments (e.g., x3 or
x4) for the aggregator to obtain more precise approximations using moment-generating
functions (an alternative to pdfs). Finally, we intend to investigate schemes for targeting
ads to users contributing data to the aggregation, by allowing the aggregator to select
specific subgroups of users according to the customer’s target population.
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